ADVANCES IN AUTONOMOUS SYSTEMS FOR SPACE EXPLORATION MISSIONS

By

Anthony R. Gross', Benjamin D. Smith?, Daniel J. Clancy', Howard N. Cannon', Anthony Barrett’,

Edward Mjolssness2 , Nicola Muscettola', Steve Chien?, and Andrew Johnson?,

'NASA-Ames Research Center, Moffett Field, CA, USA
?Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Abstract

System autonomy capabilities have made great strides in
recent years, for both ground and space flight
applications. Autonomous systems have flown on
advanced spacecraft, providing new levels of spacecraft
capability and mission safety. Such capabilities enable
missions of such complexity and communications
distances as are not otherwise possible, as well as many
more efficient and low cost applications. This paper will
focus on new and innovative software for remote,
autonomous, space systems flight operations, including
distributed autonomous systems, flight test results, and
implications and directions for future systems. Topics to
be presented will include a brief description of key
autonomous control concepts, the Remote Agent program
that commanded the Deep Space 1 spacecraft to new
levels of system autonomy, recent advances in distributed
autonomous system capabilities, and concepts for
autonomous vehicle health management systems. A brief
description of teaming spacecraft and rovers for complex
exploration missions will also be provided. New software
for autonomous science data acquisition for planetary
exploration will be described, as well as advanced
systems for safe planetary landings and an innovative
personal satellite assistant concept. Finally, plans and
directions for the future will be discussed.

Introduction

When Europeans first began to explore the New World,
they depended heavily upon the intelligence of the
explorers and their ability to utilize the resources
available within the newly explored territory. Thus, when
Lewis and Clark first embarked on their voyage across
North America, they left knowing little about what they
would encounter on their voyage. To accomplish the
exploration goals that lay ahead of them, they depended
heavily upon their own intelligence and ingenuity to
respond to the circumstances encountered while utilizing
available resources. These same capabilities have often
proved beyond Earth. The successful safe return of the
crew of Apollo 13 provides a compelling story of the
ability to respond to unforeseen circumstances using the
limited resources available at that time. Of course, the
Apollo 13 incident demonstrated the ingenuity of both the
crew and the large ground support team that worked
around the clock to explore many different scenarios for
the safe return of the crew to earth. Unfortunately, as we
start to consider further manned exploration of our solar
system, communication delays and budgetary constraints
limit our ability to depend upon a large ground support
team especially for the routine, day-to-day operation of
the mission [1,2].

Robotic spacecraft are making it possible to explore the

Copyright ©2001 by the American Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the United
States under Title 17, U.S. Code. The U.S. Government has a royalty-free license to exercise all rights under the copyright
claimed herein for Governmental purposes. All other rights are reserved by the copyright owner.

Presented at the Core Technologies for Space Systems Conference, Colorado Springs, CO, November 30, 2001.

* Anthony R. Gross is Associate Director of the Information Sciences and Technology Directorate; Benjamin D. Smith is
Manager of the Autonomy Technology Program at JPL; Daniel J. Clancy is Chief (Acting) of the Computational Sciences
Division, Howard N. Cannon is Project Manager for the NITEX Project; Anthony Barrett is a senior member of the Al
Group; Eric Mjolssness is Supervisor of the Machine Learning Group; Nicola Muscettola is Lead for the Automation and
Robotics Group; Steve Chien is Supervisor of the Artificial Intelligence Group.

other planets and understand the dynamics, composition,
and history of the bodies that make up our solar system.
These spacecraft enable us to extend our presence into
space at a fraction of the cost and risk associated with
human exploration. They also pave the way for human
exploration. Where human exploration is desired, robotic
precursors can help identify and map candidate landing
sites, find resources, and demonstrate experimental
technologies.

Current spacecraft control technology relies heavily on a
relatively large and highly skilled mission operations
team that generates detailed time-ordered sequences of
commands, or macros, to step the spacecraft through each
desired activity. Each sequence is carefully constructed
in such a way as to ensure that all known operational
constraints are satisfied. The autonomy of the spacecraft

is therefore quite limited.

With exponentially increasing capabilities of computer
hardware and software, including networks and
communication systems, a new balance of work is being
developed between humans and machines. This new
balance holds the promise of greatly increased space
exploration capability, along with dramatically reduced
design, development, test, and operating costs. New
information technologies, which take advantage of knowl-
edge-based software and high performance computer
systems, will enable the development of a new generation
of design and development tools, schedulers, and vehicle
and system health monitoring capabilities. Such tools will
provide a degree of machine intelligence and associated
autonomy which has previously been unavailable to the
mission and spacecraft designer and to the system
operator. These capabilities are critical as we look toward
future exploration of our solar system due to both the
requirements levied by these missions as well as the
budgetary constraints that limit our ability to monitor and
control these missions using a standing army of ground-
based controllers.

In the next section, autonomous control techniques being
developed at NASA are discussed. These concepts are
being developed and demonstrated within the context of a
broad range of mission scenarios, from singe spacecraft to
teams of spacecraft and rovers that cooperate in the
exploration tasks.

Autonomous Control Concepts

The ability to autonomously monitor and control complex
devices such as a robotic explorer system is critical to
NASA’s ability to accomplish many of its long-term
space exploration goals. From the beginning of the space

program in the late 1950’s, control of spacecraft and
systems have been managed by a large number of highly
trained ground control personnel. This has its roots in the
limited capability and massive size of computers of that
early period. In addition, sensor data was telemetered to
the ground, where a room full of experts would monitor
each individual system's health and send commands to the
spacecraft, either directly or via an astronaut. Over the
past forty years there has been a radical shift in this
paradigm, resulting largely from the advent of advanced
computer technology. Automation has eased the burden of
the ground controller and the astronaut, but often the tasks
performed by the software are still quite rudimentary.
This results from both computational resource limitations
and the difficulty encountered when trying to develop,
test, and validate software that provides the required

System Software
—> (supervisory controller)

Embedded/analo
g controllers

2 T

Device

Figure 1: Tiered control architecture

functionality. As missions extend outward in the solar
system, beyond the Earth-Moon system, the physical and
fiscal realities of space exploration will require new
control technologies.

Conceptually, the task of controlling a device such as a
planetary rover is principally one of maintaining the
system in a stable state while commanding transition of
the device through a series of configurations designed to
accomplish a sequence of goals in some optimal fashion.
This task however, is often quite difficult due to the
normal variations that occur within both the process and
the environment, limited observability into the current
state of the device, and the potential of abrupt failures and
degraded component performance. Traditionally, these
problems have been solved through the use of a tiered

architecture comprised of three levels, as shown in figure
1:

1. analog and embedded feedback -controllers to
perform low-level regulatory functions,

2. higher-level system software to perform nominal
command sequencing and threshold monitoring to
detect and respond to off-nominal conditions, and

3. humans to generate the command sequences,
monitor the state of the device to detect off-nominal
conditions, diagnose failures when they occur and
select recovery actions in response to these failures.

While the capabilities provided by the system-level
software have substantially increased over the past 40
years, the complexity of the missions undertaken by
NASA have also increased. As a result, the requirements
levied on the ground control team have increased, thus
requiring larger ground support teams. This paradigm
begins to break down for future missions, due both to
greatly increasing time delays in communication as well
as increasing costs of maintaining a larger ground support
team. As a result, the role traditionally performed by the
ground support team is being shifted to the system-level
software, thereby greatly increasing the functionality
required of this component. Figure 2 shows how the
functionality provided by these three different
components has shifted over the years, and where it is
expected that the responsibility will lie when supporting a
human expedition to Mars, for example.

Currently, the system-level software is developed by
engineers who use commonsense understanding of the
hardware and mission goals to produce computer code
and control sequences that will allow a spacecraft, or
other system, to achieve a particular goal while allowing
for some (usually very small) amount of uncertainty in the
environment. In developing this code, the engineer must
reason through complex sub-system interactions to
generate procedural code that can account for all the
different combinations of failures and off-nominal
conditions that might occur. As the functionality that is
required of the system-level software increases,
development, test, validation and maintenance of this
software, using this traditional approach, becomes very
difficult, if not impossible, as a result of the myriad of
off-nominal conditions that the software is expected to
handle. Furthermore, as the engineers gain a better
understanding of how the device is behaving after
deployment, it is often quite difficult to update the code to
reflect the additional information that has been obtained.

Artificial Intellicence and Autonomous Control

As attempts are made to automate the processes that are
traditionally performed by humans when monitoring and
controlling these devices, it is clear that it will often be
necessary to replicate the sophisticated inferencing
capabilities exhibited by humans when performing this
task. Over the last 4 decades, the field of artificial
intelligence has been developing a variety of automated
techniques that emulate a human’s reasoning ability [3].
While the systems developed are far from performing at

Complexity

Mercury Gemini Apolio

Shuttle Station Mars

HAL 9000

L Embedded Controls m System Software O Human Control

Figure 2: Progression across missions of the tasks performed by humans, system software

and embedded controllers.

the visionary level exhibited by the HAL 9000 computer
in 2001: A Space Odyssey, such accomplishments as the
victory of Deep Blue over Kasparov have demonstrated
that sophisticated inferencing tasks can, indeed, be
automated.

As an example of a first major step in providing an
autonomous operating capability to an actual spacecraft,
NASA developed and demonstrated, in flight, the Remote
Agent (RA) autonomous control architecture. The next
section will briefly describe that architecture and the
subsequent flight experiment that led to a new space
mission capability.

Remote Agent and the Deep Space 1 Mission

The Remote Agent architecture, developed
collaboratively between NASA Ames Research Center
(ARC) and the Jet Propulsion Lab (JPL), was part of the
Deep Space One mission within the NASA New
Millennium Program (NMP). It combined high-level
planning and scheduling, robust multi-threaded execution,
and model-based fault detection isolation and recovery,
into an integrated architecture that was able to robustly
control a spacecraft over long periods of time [4-9]. The
overall architecture of the Remote Agent, along with the
additional elements incorporated for the Deep Space 1
mission, is diagrammed in Figure 3, and will be explained
below.

Remote Agent itself was made up of three major
components, each of which played a significant, integral
role in controlling the spacecraft: Planner and Scheduler
(PS)—produces flexible plans, specifying the basic
activities that must take place in order to accomplish the
mission goals. Smart Executive (EXEC)—carries out the
planned activities. Mode Identification and Recovery
(MIR)—monitors the health of the spacecraft and
attempts to correct any problems that occur.

Remotfe Agent

Figure 3. Remote Agent and Deep Space 1
Architecture

These three parts worked together and communicated
with each other to make sure the spacecraft accomplished
the goals of the mission: EXEC requested a plan from PS.
PS produced a plan for a given time period based on the
general mission goals and the current state of the
spacecraft. EXEC received the plan from PS, filled in the
details of the plans, (eg., determined what spacecraft
system actions must take place to complete the planned
activities), and commanded the spacecraft systems to take
the necessary actions. MIR constantly monitored the state
of the spacecraft. It identified failures and suggested
recovery actions. EXEC executed the recovery action or
requested a new plan from PS that would take into
account the failure. The parts of Remote Agent were
constantly ~ communicating (using inter-process
communication) with each other and with the external
components of the spacecraft. MIR received information
regarding the state of different components from monitors
located throughout the spacecraft. PS must receive
information from planning experts in order to generate the
plan. For example, the navigation system reports to PS
regarding the spacecraft's current position, and the
attitude-control system tells PS how long it will take to
turn the spacecraft to a new position. Finally, EXEC
sends commands to other pieces of flight software that, in
turn, control the spacecraft's systems or flight hardware.

As proof of the concept and capabilities, the Remote
Agent software operated NASA's Deep Space 1
spacecraft and its futuristic ion engine during two
experiments in May of 1999. For two days Remote Agent
ran on the on-board computer of Deep Space 1, more than
60,000,000 miles (96,500,000 kilometers) from Earth.
The tests were a successful step toward robotic explorers
of the 21st century that will be less costly, more capable,
and more independent from control from Earth.

Future exploration missions envision utilizing multiple
rovers that are able to interact among themselves and thus
greatly increase the science data return. The next section
describes the research and development activities that are
the basis of the capabilities required for such advanced
missions.

Distributed Autonomous Systems

From the Terrestrial Planet Finder to robots helping each
other scale cliffs on Mars, many future NASA mission
concepts involve teams of tightly coordinated
spacecraft/rovers in dynamic, partially understood
environments. In order to maintain team coherence, each
spacecraft must robustly respond to team coordination
anomalies as well as local events. Currently manual
techniques for implementing such teams are extremely

Leaders

PlanneySg

Followers

TExsodivelDiagnostioian |

Figure 4. Software anatomy of leaders, followers, and slaves in an autonomous constellation.

difficult. These techniques involve either having one
spacecraft tightly control the others or giving each
spacecraft a separate activity sequence with explicit
communication actions to coordinate with other
spacecraft. While both approaches can handle two or
three simple spacecraft, neither scales to larger
populations or more complex spacecraft. New techniques
are needed to facilitate managing populations of 3 or
more complex spacecraft.

In general, autonomous spacecraft and rovers must
balance long-term and short-term considerations. They
must perform purposeful activities that ensure long-term
science and engineering goals are achieved and ensure
that they each maintain positive resource margins. This
requires planning in advance to avoid a series of
shortsighted decisions that can lead to failure. However,
they must also respond in a timely fashion to a dynamic

onboard data storage capacity. This will limit the level of
autonomy each of the satellites can have. Finally, these
issues apply to multiple rover missions too. A group of
rovers might want to simultaneously measure vibrations
caused by an explosion to determine the subsurface
geology of an area on Mars. Developments are currently
underway in team planning and execution to address these
issues [10].

Team Plans

Current missions control multiple spacecraft by either
giving one spacecraft a control sequence and having it
treat the others as if they were virtually connected or
giving each spacecraft its own command sequence with
inserted communications actions for coordination
between spacecraft. Neither approach scales as
populations increase nor as members become more
capable. While the first requires too much bandwidth, the
second suffers from instabilities that lead to a variety of
coordination failures.

and partially-understood environment. In terms of high-
level, goal-oriented activity, the spacecraft must modify
their collective plans in the event of fortuitous events such
as detecting scientific opportunities like a sub-storm onset
in Farth’s magnetosphere or a Martian hydrothermal vent,
and setbacks such as a spacecraft losing attitude control.

Whether they are orbiters, probes or rovers, coordinating
multiple distributed agents introduces unique challenges.
Issues arise concerning interfaces between agents,
communication bandwidth, group command and control,
and onboard capabilities. For example, consider a mission
with a cluster of satellites simultaneously observing a
point on a planet from different angles with different
sensors. A certain level of communication capabilities
will need to be assigned to each, possibly limiting the
amount of information that can be shared between the
satellites (and a ground station). The onboard capabilities
also need consideration, including computing power and

These limitations can be overcome with hierarchical
‘team plans’ [11], which provide a rich representation for
coordinated actions and communication while allowing
the flexibility needed to adapt those plans in response to
execution-time uncertainties. The representation for
reactive team plans assumes a model of teamwork
implemented on agents (like spacecraft) whose
architectures explicitly support representing and
reasoning about team goals, team plans, and team states.
Team plans are hierarchical plans generalized to include
team operators. Our approach builds on hierarchical
reactive plans to provide a representation for explicitly
defining constellation behavior. Giving each spacecraft
the full constellation plan has several advantages over
breaking up a plan into different role plans for each
spacecraft. It enables a spacecraft’s awareness of how its
current activity relates to other spacecrafts’ activities.
This information makes a constellation more robust by
letting spacecraft monitor each other’s progress. Also, this
information facilitates autonomous recovery when

unexpected events happen. When one spacecraft fails to
make progress, the related spacecraft can coordinate their
responses.

Onboard Team Planning

While team plans provide a powerful way to specify team
behaviors, teams operating in uncertain environments
must be able to adapt those plans in response to
unexpected events and opportunities. This capability is
provided by onboard team planning, which extends
single-spacecraft onboard planning to address issues of
coordination and limited inter-agent communication
bandwidth.

In order to facilitate this form of goal-based constellation
commanding we are developing two complementary
techniques. Goal Distribution Planning will let a
designated lead spacecraft/rover plan with an abstract
model of all followers in order to assign goals across the
population. Conmfract Networks will let any
spacecraft/rover serve as an auctioneer to distribute goals.
These two approaches are actually two points in a
spectrum of approaches where the leader gives its
followers progressively more autonomy in deciding who
satisfies which goals and how to satisfy a goal. While the
first approach uses one spacecraft to collect all
constellation information and generate a team
plan/schedule, the second reduces communication
overhead by spreading planning and scheduling activities
across all spacecraft. In addition to extending these
approaches to work with continual planners, this research
explores the spectrum by developing a hybrid system that
uses both approaches.

Goal Distribution Planning (Master/Slave)

In the master/slave approach, one lead spacecraft
embodies all four of the components and teleoperates the
others. Our approach extends the MADS master/slave
approach toward teamwork. In this approach a
distinguished lead spacecraft will collect goals, generate a
fleet plan, and broadcast it for execution. Just like a self-
commanding spacecraft, the lead constellation spacecraft
must respond in a timely fashion in a dynamic partially
understood environment.

While this approach benefits from conceptual simplicity,
it relies on an assumption that the leader's hardware
proxies can continuously monitor the slaves' hardware,
and this relies on high-bandwidth highly reliable
communications. Reducing the requirements involves
localizing reactive feedback loops by putting hardware
proxies on all spacecraft, but this requires replicating the
executive/diagnostician to appropriately manage the local
hardware proxies. The final result is a constellation

control architecture where the constellation's leaders,
followers, and slaves depend on mission requirements.

Contract Networks

As an alternative to the master/slave approach, we are
also pursuing work on market-based approaches to
constellation planning [12]. The master/slave approach
places too much of a burden on the lead spacecraft by
requiring it to know the full state of all constellation
spacecraft prior to planning and scheduling. The market-
based approach is one of a family of approaches that
spreads the burden across the constellation by designing
protocols and mechanisms through which each spacecraft
acquires goals and resources to generate the desired team
behavior. In a computational market, distributed agents
interact with each other to exchange goods and services.
With these protocols, agents participate in a
computational economy by interacting in the market to
further their own interests. This technique, called market-
based programming, is built on the observation that
techniques from economics can apply to protocol design
to assure appropriate allocations of goals and resources
for an efficiently functioning constellation.

In the market-based approach, the agents with mission
goals (spacecraft) are defined as consumers. Agents
performing activities are producers, and the preconditions
and results of activities are goods. The lead (or any other)
spacecraft can act as a consumer by advertising a mission
goal with its value. Spacecraft bid for the work, and the
winner would take the goal and act as a producer by
performing an activity to resolve it and possibly
subcontracting subgoals to other spacecraft to bid on.

Closed-loop Science Autonomy

Closed-loop science autonomy technologies are being
developed that will enable scientists to prioritize and
reduce data onboard in order to make the best use of
limited communication bandwidth, to scan high-rate
instrument data streams for short-lived or hard-to-find
events, and to detect and exploit short-lived science
opportunities that would otherwise be lost.

In current science missions ground-based science teams
decide what observations to take based on information
from Earth-based observations, prior missions, and even
new data from the current mission. While this decision
loop enables extremely high-quality decisions, it is also a
very slow one. Closed-loop science autonomy migrates
some of that intelligence onboard the spacecraft to enable
on-the-spot decisions when there just is not enough time
or bandwidth to make those decisions on the ground.

Two of the closed-loop science autonomy technologies
being developed at JPL are described below. The first of
these focuses on orbital missions, whereas the second
focuses on landed missions.

Autonomous Sciencecraft Constellation

The Autonomous Sciencecraft Constellation flight
demonstration (ASC) will fly onboard the Air Force’s
TechSat-21 constellation (an unclassified mission
scheduled for launch in 2004). ASC will use onboard
science analysis, replanning, robust execution, model-
based estimation and control, and formation flying to
radically increase science return by enabling intelligent
downlink selection and autonomous retargeting.
ASC will autonomously recognize science opportunities
and then reconfigure
the constellation to
acquire focused images
on subsequent orbits.
This onboard
recognize-and-replan
loop enables the

Figure 5: TechSat-21 (AFRL) Zliz;f:tfizguy increa;:

the science per fixed
downlink by enabling downlink of only the highest
priority science data. Demonstration of these capabilities
in a flight environment will open up tremendous new
opportunities in planetary science, space physics, and
earth science that would be unreachable without this
technology. ASC is a collaboration including JPL, the
Air Force Research Laboratory, Interface & Control
Systems, Princeton Satellite Systems, Arizona State
University, the University of Arizona, and MIT.

The ASC onboard flight software includes several

autonomy software components:

e Onboard science algorithms that will analyze the
image data, generate derived science products, and
detect trigger conditions such as science events,
“Interesting” features, and change relative to previous
observations (e.g., [13,14]).

e The Continuous Activity Planning, Scheduling, and
Replanning (CASPER) [15] planner that will replan
activities, including downlink, based on science
observations in the previous orbit cycles.

o Model-based mode identification and execution (MI-
R) that uses component-based hardware models to
analyze anomalous situations and to generate novel
command sequences and repairs.

® Robust execution management software using the
Spacecraft Command Language (SCL) [16] package
to enable event-driven processing and low-level
autonomy.

e The ObjectAgent and TeamAgent cluster
management software will enable the three Techsat-
21 spacecraft to autonomously perform maneuvers
and high precision formation flying to form a single
virtual instrument.

The onboard science algorithms will analyze the images
to extract static features and detect changes relative to
previous observations. Prototype software has already
been demonstrated on X-band radar data (from shuttle
missions) to automatically identify regions of interest.
This includes identification of regions where changes
such as flooding, ice melt, and lava flows have occurred;
and recognition of features such as craters and volcanoes.
Such onboard science will enable retargeting and search,
e.g., shifting the radar aim-point on the next orbit cycle to
identify and capture the full extent of a flood. Onboard
science analysis would also enable capture of short-lived
science phenomena at the finest time-scales without
overwhelming onboard caching or downlink capacities.
Examples include of this include: eruption of volcanoes
on Io, formation of jets on comets, and phase transitions
in ring systems. Generation of derived science products
(c.g., boundary descriptions, catalogs) and change-based
triggering will also reduce data volumes to a manageable
level for extended duration missions that study long-term
phenomena such as atmospheric changes at Jupiter and
flexing and cracking of the ice crust on Europa.

The onboard planner (CASPER) will generate mission
operations plans from goals provided by the onboard
science analysis module. The model-based planning
algorithms will enable rapid response to a wide range of
operations scenarios based on a deep model of spacecraft
constraints, including faster recovery from spacecraft
anomalies. The onboard planner will accept as inputs the
science and engineering goals and ensure high-level goal-
oriented behavior for the constellation.

The robust execution system (SCL) accepts the CASPER-
derived plan as an input and expands the plan into low-
level commands. SCL monitors the execution of the plan
and has the flexibility and knowledge to perform event-
driven commanding to enable local improvements in
execution as well as local responses to anomalies.
Livingstone 2 performs model-driven estimation of
spacecraft state, and Burton [21] also accepts
configuration goals from SCL. The ObjectAgent and
TeamAgent cluster management software manages the
maneuver planning and execution for the constellation. It
accepts high-level constellation formation goals from
CASPER and plans and executes these formations to
support science (e.g. radar imaging) and engineering (e.g.
downlink) activities.

One of the ASC demonstration scenarios involves
monitoring of lava flows in Hawaii. SIR-C radar data
have been used in ground-based analysis to study this
phenomenon. The ASC concept would be applied as
follows:

(1) Initially, ASC has a list of science targets to
monitor.

(2) As part of normal operations, CASPER
generates a plan to monitor the targets on this list
by periodically imaging them with the radar.

(3) During such a plan, a spacecraft images the
volcano with its radar.

(4) Onboard, a reflectivity image is formed.

(5) The Onboard Science Software compares the
new image with previous image and detects that
the lava field has changed due to a new flow.
Based on this change the science software
generates a goal to acquire a new high-resolution
image of an area centered on the new flow.

(6) The addition of this goal to the current goal set
triggers CASPER to modify the current
operations plan to include numerous new
activities in order to enable the new science
observation. During this process CASPER
interacts with ObjectAgent to plan required
slews and/or maneuvers.

(7) SCL executes this plan in conjunction with
several autonomy elements. Mode Identification
assists by continuously providing an up to date
picture of system state. Reconfiguration (Burton)
achieves configurations requested by SCL. And
ObjectAgent and TeamAgent execute maneuvers
planned by CASPER and requested at run-time
by SCL.

(8) Based on the science priority, imagery of
identified “new flow” areas; are downlinked.
This science priority could have been determined
at the original event detection or based on
subsequent onboard science analysis of the new
image.

As demonstrated by this scenario, onboard science
processing and spacecraft autonomy enable the focus of
mission resources onto science events so that the most
interesting science data is downlinked. In this case, a
large number of high priority science targets can be
monitored and only the most interesting science data
(during times of change and focused on the areas of
change) need be downlinked.

The ASC concept has been selected for flight on the
Techsat-21 mission and the necessary software is
currently being matured and brought into flight readiness.
Key Techsat-21 design reviews occur in Spring 2001 to
Spring 2002, with final delivery of the spacecraft and
software in September 2003. Nominal launch date is

September 2004. The NASA New Millennium Space
Technology 6 Project has selected the ASC concept for a
Phase-A award.

Hypothesis-directed Science

In many science acquisition scenarios it is important not
only to detect science opportunities, but also to evaluate
them in order to select the best subset for focused
observations. This evaluation depends on the expected
utility of the observation and the expected cost of
acquiring it, relative to the other opportunities. The
expected utility depends not only on a static ‘figure of
merit’, but also the degree to which it is expected to
support or weaken an emerging scientific hypothesis
when combined with other observations. We refer to this
as hypothesis-directed science.

The Multi-Rover Integrated Science Understanding
System (MISUS) autonomously identifies and exploits
geologic science opportunities in landed-mission
scenarios [17]. It employs machine learning methods to
identify, evaluate, and select science opportunities. It then
employs a distributed planning component (ASPEN [15])
to determine the sequence of rover activities needed to
acquire them and to estimate the acquisition cost based on
those activities. Planning activities are distributed among
the individual rovers where each rover is responsible for
planning for its own activities. A central planning system
is responsible for dividing up the goals among the
individual rovers in a fashion that minimizes the total
traversing time of all rovers.

Science data analysis in MISUS is performed using
machine learning clustering methods, which use image
and spectral mineralogical features to help classify
different planetary rock types. Specifically, the clustering
methods employed look for similarity classes of visual
texture and reflectance spectra across multiple targets
such as rocks. These clusters can then be used to help
evaluate scientific hypotheses and also to prioritize visible
surfaces for further observation based on their “'scientific
interest." As the clusterer builds a model of the rock type
distribution, it continuously assembles a new set of
observation goals for a team of rovers to collect from
different terrain locations. Thus, the clusterer drives the
science process by analyzing the current data set and then
deciding what new and interesting observations should be
made. Clustering in MISUS is performed by a novel
distributed algorithm where each rover alternates between
independently performing learning computations using its
local data and updating the system-wide model through
communication among rovers.

Efforts are underway to incorporate recently developed
hypothesis-directed algorithms for this evaluation and
selection. These algorithms utilize the rock-type
classifications and spatial clustering results to determine
which geological processes were most likely to have
formed the observed deposits. The observations provide
evidence for or against various parameterized formation
models (hypotheses), and for identifying the most likely
parameter settings. Figure 5 shows one such
parameterized formation model for crater-impact deposits.
We have modeled the ejecta using the simple and
phenomenological z-flow model for excavation
augmented to include rock fragmentation by shock, and
ballistic =~ emplacement. The hypothesis-directed

algorithms determine which parameter settings were most
likely to have resulted in the observed rock types and
spatial distribution.

Vertical distance, m

Horizontal distance, m

Figu 6. Model output of excavation flow from
simple crater-forming impact.

This hypothesis information enables the system to select
observations that are most likely to enable scientists to
identify the geological processes and answer critical
questions than they could from observations evaluated
based on simple ‘figure-of-merit’ calculations.
Hypothesis-directed capabilities will be particularly
important for future missions, such as Titan Organics
Explorer and the Europa Hydrobot, where infrequent
communications and dynamic environments will require
unprecedented levels of onboard science decision making.

These kinds of geological models are, we propose,
essential to creating future intelligent in situ spacecraft
software because they provide the foundation for
evaluating the effects of new data on the likelihood of
alternative geological hypotheses. Adapting pattern
recognition techniques to infer such models from data is
* one route to intelligent, goal-directed robotic exploration.

Safe Landing Systems

Exploration of the solar system will require robotic
systems that can navigate and land safely on planets and
small bodies. Due to the small size, irregular shape and
variable surface properties of small bodies, accurate
position estimation and hazard avoidance are needed for
safe and precise small body landing and sample return.
Because of the communication delay induced by the large
distances between the earth and targeted small bodies,
landing on small bodies must be done autonomously
using onboard sensors and algorithms. Machine vision
technologies are being developed that can recognize
landmarks for navigation, estimate spacecraft motion by
tracking surface features, and identify safe landing sites
[18]. These technologies are being combined with
guidance navigation and control algorithms on existing
real-time testbeds to provide an integrated capability for
precise navigation, landing, and hazard avoidance.

Hazard Detection

A lander must be able to detect safe landing sites from
hazardous ones. We use
motion stereo vision to
generate dense 3D
topographic maps of a
small body surface from
monocular image streams.
Image-based motion
estimation is applied to
determine the spacecraft
motion between each
frame, then each image is
rectified to a fixed plane
and stereo vision
techniques are used to
match image pixels to obtain pixel level depth estimates
[19]. Terrain hazards are then
extracted from the surface map,
Figure 7.

Figure 7: 3D surface
reconstruction and hazard
map.

Position Estimation

Our research combines two
complementary methods for
position estimation: feature

tracking and landmark
recognition. Feature tracking
detects and tracks image
features through a sequence of
images enabling the six degree-
of-freedom (DoF) relative
motion of the spacecraft to be
determined for each frame.

Figure 8: Position estimated
from recognized landmarks.

Landmark recognition first detects landmarks during 3-D
modeling of the body and stores them in a database along
with their positions. To estimate position, landmarks are
detected and matched against the database to obtain the
absolute position of the spacecraft relative to the body
[20]. By combining the continuous updates of relative
position from feature tracking with the occasional updates
of absolute position from landmark recognition,
continuous estimates of spacecraft position in absolute
body centered coordinates can be obtained, Figure 8.

Autonomous Landing

This research will develop a closed-loop image-based safe
and precise landing capability by integrating position
estimation, hazard detection, and 3D surface
reconstruction algorithms with an aerial test bed
composed of a commercial model-helicopter chassis,
onboard processing and multiple navigation sensors.

We now turn to another key element of autonomous
systems — the capability of a system to determine its
overall health, diagnose its internal faults, and either
provide self-generated remedies or otherwise signal
potential fixes. This capability is commonly referred to as
integrated vehicle health management. Such a capability
greatly increases the probability of mission success, as
well as reducing the need for human involvement and
intervention. In the next section a strategy to achieve such
a system capability is described, as well as a planned
flight demonstration.

Integrated Vehicle Health Management

One of the current approaches to achieving this important
capability is the Livingstone model-based health
management system. Livingstone is an advanced
inference engine that uses a high-level declarative model
of a physical device to monitor the state of that device,
detect off-nominal behavior, isolate failures to individual
components, and reason about alternative recovery
actions. The key benefit provided by Livingstone is the
use of a first-principles model that describes the behavior
of each component within the device and the interactions
between the components [5,6,7]. By reasoning
generatively about the behavior of the device using the
model, Livingstone is able to detect failures whenever a
discrepancy occurs between the observations and

10

predictions. In addition, Livingstone is able to use the
same model to generate the most likely hypothesis that is
consistent with the observations and to select the optimal
reconfiguration action for recovering from the failure.
Thus, with the use of a model of the device, Livingstone
is able to reason about novel combinations of failures and
avoids the need to develop mission-specific code that
must pre-enumerate all of the various failure
combinations that might occur. Furthermore, the models
used by Livingstone are easy to update and maintain and
can often be reused across missions, thus further reducing
the software development costs while increasing the
functionality provided. A more detailed description of the
Livingstone system is provided in the following sections.

Modeling Paradigm

As mentioned above, Livingstone uses a high-level,
compositional model to identify the components within
the device and the relationships between the components.
This model is used for prediction, fault detection,
isolation and reconfiguration. A Livingstone model is
comprised of a set of components and connections
between these components. Each component is modeled
using a set of discrete valued variables. For example, a
valve might be modeled using the variables flow-in, flow-
out, pressure-in and pressure-out with values such as
zero, low, nominal, high. For each component, a set of
modes is defined identifying both the nominal and failure
modes of the device. For each mode, a set of constraints
is specified that restrict the values of the component
variables whenever the component is in that mode. Thus,
a valve might be modeled using modes such as open,
closed, stuck-open and stuck-closed where the model of
the valve in the open mode might be:

flow-in = flow-out
pressure-in = pressure-out

In addition, to the description of the behavior of the
device for each mode, the model also includes transitions
between modes with guard conditions describing when
the transition occurs along with relative probabilities on
the likelihood of the transitions. These probabilities are
used to provide information about the relative likelihood
of various failures. Figure 9 shows how a valve model
might be represented as a finite-state automaton in which
the labels on the links correspond to device commands.

Nominal modes

closed

F-out=0
P-out = nom

Stuck-open

F-in = F-out
P-in = P-out

Failure modes

Figure 9. Valve model

One of the key benefits of this modeling paradigm is that
the modeler is only responsible for describing the /ocal
behavior of each component and the relationships that
exist between components. Livingstone then uses this
specification to compose a larger, system model that can
be used to reason about the global behavior of the entire
system given the mode of each component. Furthermore,
since the models are qualitative in nature it is often clear
as to how to develop many of these models, even before
the hardware design is complete.

Inference with Livingstone

Given a model of the form described in the preceding
section, Livingstone performs two main tasks: 1) inferring
the current state of the device given the limited available
sensor information; and 2) identifying an optimal set of
commands for system reconfiguration following a failure
or external perturbation that transitions the system out of
the desired state. At first glance, it might appear that the
valve model described in the previous section is too
simple to be of much use in performing these tasks. In
practice, however, qualitative models of this nature have
been found to be quite effective for detecting a wide range
of likely failures. In fact, it is exactly these types of
models that humans often use when reasoning about the
current state of a device.

To estimate the current state of the system, Livingstone
monitors the sequence of discrete commands that are
issued to device or system. This allows the tracking of the
expected state of the device and compares the predictions
generated from its model against the observations
received from the sensors. Once a discrepancy occurs,
Livingstone performs a diagnosis by searching for the
most likely set of component mode assignments’ that are
consistent with the observations. This is done using a

! The state of the device is represented by identifying the
current mode of each component in the model.

11

search technique called conflict-directed, best-first
search, developed within the model-based reasoning area
of the artificial intelligence community. This search
technique is able to efficiently search an exponentially
large set of failure modes by focusing on the components
whose state results in a conflict between the observations
and the predictions. Within the Deep Space One
experiment, for example, this search technique was able
to identify the most likely component failure within a
couple hundred milliseconds for most device failures.

Once the state of the system is identified, the same search
techniques can then be used when reasoning about
reconfiguration commands to identify the lowest cost set
of commands that can be issued to transition the system
into a state that satisfies the current operational goals
provided by a higher level executive.

As a particular example of the application of the
Livingstone architecture, a testbed experiment was
planned that would allow flight testing of such an
architecture on an experimental resuable launch vehicle.
That application will be described in the following
section.

The NITEX System

The NASA IVHM Technology Experiment for X-vehicles
(NITEX) was selected to fly on the X-34 reusable launch
vehicle being developed by Orbital Sciences Corporation.
NITEX is being developed collaboratively between
NASA Ames Research Center, NASA Glenn Research
Center, and Kennedy Space Center. The X-34 vehicle is
shown in Figure 10. The goal of the X-34 TVHM flight
experiment is to advance the technology readiness levels
of selected IVHM technologies within a flight
environment and to begin the transition for these
technologies from experiment status into accepted RLV
baseline designs.

The experiment will monitor the X-34 vehicle throughout
all mission phases using detailed diagnostic algorithms to
detect degraded component performance as well as a
system-level health monitoring system that integrates
information from multiple components to perform real-
time fault detection, isolation and recovery. In addition,
the experiment will demonstrate the use of an advanced,
user friendly ground station that combines information
provided by the on-board IVHM software with
information obtained while the vehicle was on the ground

Figure 10. X-34 Flight Vehicle

to provide high-level status information on the health of
the vehicle along with the ability to access more detailed
information when required. The ground station will also
provide justification for the inferences made by the IVHM
system and alternative recovery recommendations
following a failure while in flight. The focus of the
experiment will be on the X-34’s Main Propulsion
Subsystem (MPS) including the Fastrac Engine and the
Reaction Control System (RCS). The NITEX experiment
architecture is shown in Figure 11.

Experiment Avionics Box

Feature
extraxtion

simple

sensors declarative

vehiele
commands

Overview of the NITEX Experimental
Architecture

Figure 11.

This experiment will monitor all the sensor data
pertaining to this subsystem and track commands to
determine the expected state of the device and ensure the
vehicle is responding appropriately to the commands that
have been issued. Sensor data from related subsystems
(e.g., power) might also be monitored when appropriate to
help isolate anomalies that are manifested within the MPS
sensor suite. Selected components will be used to
demonstrate the detailed diagnostic algorithms used to

12

detect component degradation. The components used will
be selected based upon information obtained from OSC
and Marshall Space Flight Center (MSFC) regarding
potential problems within the vehicle and the available
sensor data. In addition, the experiment team will provide
a ground-based monitoring station that monitors the
vehicle during preflight and postflight processing,
displays the results of the experiment while the vehicle is
in flight, and provides advanced summarization and
explanation capabilities to justify the inferences made by
the experiment software.

A Multi-Agent Architecture

One reason to build a model-based discipline for the
development of autonomous system software is to reduce
the complexity and cost of achieving the same system
functionality with respect to traditional software
engineering methodologies. In the future, as our space
exploration becomes more daring and more distant, the
capabilities required from the explorer’s controllers and
their complexity is going to rise at an exponential pace.
The limits of our current method of spacecraft operations
have already been reached.

For example, the Mars Exploration Rovers (MER)
mission will operate two rovers on the surface of Mars
starting in 2004 with autonomy on board limited to
collision avoidance during traversal and with ground
operators intimately involved in all aspects of rover
commanding and science observation planning. The
traversal plan for MER calls for at most 1Km traversal
and at most 12 targets for scientific observation per rover
during the 90 days nominal mission duration. The next
rover mission, currently slated for 2007, will require
traversals in the order of 10Km and an increase in the
number of scientific targets. Since the nominal mission
duration is considered to be about 180 days, it is clear that
the MER approach to mission operations will not suffice.
Necessary autonomous capabilities include the ability of
the rover to autonomously plan traversal beyond the
horizon of its initial stationary panorama, the ability to
reach a target location with accuracies of a few
centimeters, and the ability to reliably position
instruments carried by a deployment arm on exactly the
same location on a target.

The development of an integrated and reliably software
system for a highly autonomous mission requires
overcoming several major challenges. The first challenge
is achievement of a fully integrated approach to the
development both of autonomy software and traditional
control for mission software. At present, as demonstrated
by the Remote Agent Experiment, autonomy software is
still seen as a “add on” to traditional flight software.
There are two problems with this approach. First, it makes
the insertion of autonomy capabilities less attractive from

a cost perspective, since the implication is that one would
still have to develop a traditional approach to spacecraft
commanding and fault protection besides the autonomy
software approach. Second, it prevents from spreading the
benefits of the model-based approach to the development
of traditional software. This is particularly important
because the closer the software is to the hardware and the
more difficult it is to obtain repeatable behaviors purely
with extensive testing. Making the model of how the
software behaves explicit allows the direct application of
formal wvalidation and verification techniques that
significantly increase the reliability of mission-critical
control loops.

One possible approach to overcoming these challenges,
being investigated by the IDEA project, is to implement
complex software control systems as a collection of
Interacting agents: i.¢., software modules with an internal
representation of the world with which they interact, their
own internal functioning and the way they interact with
the rest of the world. The model-based approach will be
beneficial to model the communication protocols between
agents and provide a way to validate a system in a
compositional manner. The internal structure of each
agent can then vary depending of what technology is used
to implement it. Some agents will be implemented as
traditional software and other using one of a variety of
model-based software technologies. Rather - than
prescribing in detail how each individual module should
operate internally, the compositional multi-agent
approach will provide a standard that will facilitate the
introduction of new autonomy technology in mission
software, a situation that the current approach to flight
software development makes extremely difficult.

Concluding Remarks

The coming decades will see many new opportunities to
expand human presence in the solar system. As we
penetrate deeper into space we must implement space
exploration missions at lower cost, with greater safety,
and achieve greater scientific return. Fortunately we are
able to develop powerful new computer/information
systems to meet these needs. To this end, NASA has
embarked on the Computer, Information, and
Communications Technology Program, which will
research and develop new capabilities in the many areas
of technology required for complex future missions,
including automated reasoning, human-centered
computing, intelligent use of data, and concepts for
revolutionary computing, such as biomemetics and
nanotechnology. Ultimately there will be a distinctly new
balance of work between humans and intelligent
machines, where tasks will reside with the entity having
the best capability, irrespective of mechanism of origin.
This will provide the total human-machine system with

13

the capability to explore far beyond the limits of the
present.

Acknowledgements

Portions of the work described in this paper were
performed at the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National
Aeronautics and Space Administration.

References

Some of the following papers may be found on the World
Wide Web at http.//ic-www.arc.nasa.gov/ic/projects/mba/,
and at http://www-aig.jpl.nasa.gov

1. R. Zubrin and R. Wagner. The case for Mars: The plan
to settle the Red Planet and why we must. The Free
Press, 1996.

2. S. J. Hoffman and D. I. Kaplan, editors. Human
Exploration of Mars: The Reference Mission of the
NASA Mars Exploration Study Team. NASA Special
Publication 6107. July 1997.

3. S. Russel and P. Norvig Artificial Intelligence: A
Modern Approach, MIT Press 1995.

4. D. E. Bernard et Al. Design of the Remote Agent
Experiment for Spacecraft Autonomy. Proceedings of
IEEE Aero-98.

5. J. de Kleer and B. C. Williams, Diagnosing Multiple
Faults, Artificial Intelligence, Vol 32, Number 1,
1987.

6. J. de Kleer and B. C. Williams, Diagnosis With
Behavioral Modes, Proceedings of IJCAI-89, 1989.

7. 1. de Kleer and B. C. Williams, Artificial Intelligence,
Volume 51, Elsevier, 1991.

8. B. C. Williams and P. P. Nayak. Immobile Robots: Al
in the New Millennium. In A7 Magazine, Fall 1996.

9. N. Muscettola. HSTS: Integrating planning and
scheduling. In Mark Fox and Monte Zweben, editors,
Intelligent Scheduling. Morgan Kaufmann, 1994,

10. A. Barrett, "Autonomy Architectures for a
Constellation of Spacecraft,” International
Symposium on Artificial Intelligence Robotics and
Automation in Space (ISAIRAS), Noordwijk, The
Netherlands, June 1999.

11. P. Pirjanian, T. Huntsberger, A. Barrett,
"Representation and Execution of Plan Sequences for
Distributed Multi-Agent Systems,” Proceedings of

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

the 2001 Intelligent Robots and Systems Conference,
Maui, HI, November 2001.

A. Barrett, G. Rabideau, T. Estlin, S. Chien,
"Coordinated Continual Planning Methods for
Cooperating Rovers," Proceedings of the 2001 IEEE
Aerospace Conference, Big Sky, MT, March 2001.

M.C. Burl, L. Asker, P. Smyth, U. Fayyad, P. Perona,
J. Aubele, and L. Crumpler, “Learning to Recognize
Volcanoes on Venus,” Machine Learning Journal,
April 1998.

M.C. Burl, W.J. Merline, E.B. Bierhaus, W. Colwell,
C.R. Chapman, “Automated Detection of Craters and
Other Geological Features Intl Symp Artificial
Intelligence Robotics & Automation in Space,
Montreal, Canada, June 2001

S. Chien, G. Rabideau, R. Knight, R. Sherwood, B.
Engelhardt, D. Mutz, T. Estlin, B. Smith, F. Fisher,
T. Barrett, G. Stebbins, D. Tran, “ASPEN -
Automating Space Mission Operations using
Automated Planning and Scheduling,” SpaceOps,
Toulouse, France, June 2000.

Interface & Control Systems, Spacecraft Command
Language, http://www.sclrules.com.

T. Estlin, T. Mann, A. Gray, G. Rabideau, R.
Castano, S. Chien and E. Mjolsness, "An Integrated
System for Multi-Rover Scientific Exploration,"
Sixteenth National Conference of Artificial
Intelligence (AAAIL-99), Orlando, FL, July 1999.

A. Johnson, Y. Cheng, and L. Matthies, “Machine
Vision for Autonomous Small Body Navigation,”
Proc. IEEE Aerospace Conf., March 2000.

Y. Cheng, A. Johnson, L. Matthies and A. Wolf
“Passive Imaging Based Hazard Avoidance for
Spacecraft Safe Landing,” Proc. 6th ISAIRAS, June
2001.

A. Johnson, “Surface Landmark Selection and
Matching in Natural Terrain,” Proc. Computer Vision
and Pattern Recognition, June 2000.

B. Williams and P. Nayak “A reactive planner for a
model-based execution,” Proceedings of the 15"
Joint International ~Conference on Artificial
Intelligence (IJCAI °97), 1997.

14

